Reduced Mumford divisors of a genus 2 curve through its jacobian function field

نویسنده

  • Eduardo Ruiz Duarte
چکیده

We explore the function field of the jacobian JH of a hyperelliptic curve H of genus 2 in order to find reduced coordinates to represent points of JH and do arithmetic. We show how this relates to the usual Mumford representation of points of JH. Moreover we identify the open subsets of JH where our reduced coordinates are defined, characterizing the elements which can be reduced and we discuss the group operation with them.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Explicit endomorphism of the Jacobian of a hyperelliptic function field of genus 2 using base field operations

We present an efficient endomorphism for the Jacobian of a curve C of genus 2 for divisors having a Non disjoint support. This extends the work of Costello in [12] who calculated explicit formulæ for divisor doubling and addition of divisors with disjoint support in JF(C) using only base field operations. Explicit formulæ is presented for this third case and a different approach for divisor dou...

متن کامل

Curves over Finite Fields and the Manin-mumford Conjecture

Let k be a finite field, X/k a projective non-singular curve of genus g ≥ 1, and x0 ∈ X(k) a point. For x ∈ X(k̄), let ord(x) denote the order of the divisor [x]− [x0] in the Jacobian of X. Then for every integer n relatively prime to |k|, there exists x ∈ X(k) such that n divides ord(x). Let X be a curve of genus g ≥ 2 over a field K, and let J denote the Jacobian variety of X. We regard X as a...

متن کامل

On the Existence of Dimension Zero Divisors in Algebraic Function Fields

Let F/Fq be an algebraic function field of genus g defined over a finite field Fq. We obtain new results on the existence, the number and the density of dimension zero divisors of degree g− k in F/Fq where k is an integer ≥ 1. In particular, for q = 2, 3 we prove that there always exists a dimension zero divisor of degree γ − 1 where γ is the q-rank of F and in particular a non-special divisor ...

متن کامل

Co-Z Divisor Addition Formulae in Jacobian of Genus 2 Hyperelliptic Curves over Prime Fields

in this paper we proposed a new approach to divisor scalar multiplication in Jacobian of genus 2 hyperelliptic curves over fields with odd characteristic, without field inversion. It is based on improved addition formulae of the weight 2 divisors in projective divisor representation in most frequent case that suit very well to scalar multiplication algorithms based on Euclidean addition chains....

متن کامل

NÉRON MODELS AND COMPACTIFIED PICARD SCHEMES OVER THE MODULI STACK OF STABLE CURVES By LUCIA CAPORASO

We construct modular Deligne-Mumford stacks Pd,g representable over Mg parametrizing Néron models of Jacobians as follows. Let B be a smooth curve and K its function field, let XK be a smooth genus-g curve over K admitting stable minimal model over B. The Néron model N(PicXK ) → B is then the base change of Pd,g via the moduli map B −→ Mg of f , i.e.: N(PicXK ) ∼= Pd,g ×Mg B. Moreover Pd,g is c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2017  شماره 

صفحات  -

تاریخ انتشار 2017